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the available spectroscopic evidence  suggest^^,^' the absence 
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Bond indices I(ML) are introduced for the ground and the excited states of hexacoordinated transition-metal complexes. 
The formalism is developed for the general case where the three orthogonal axes are characterized by different ligand field 
parameters. It is shown that photolabilization and photosubstitution reactions can be summarized by the simple rule that 
the leaving ligand is the one characterized by the smallest value of the bond index I*(ML). 

Introduction 
Adamson’s rules’ on the photolabilization of hexa- 

coordinated transition-metal complexes have been discussed 
extensively in the recent l i t e ra t~re .~-~  So far, all the complexes 
under consideration were characterized by a real or an effective 
Dqh symmetry. The bond-breaking process is accordingly 
classified either as axial labilization or as equatorial labili- 
zation. Recently, a few cases were reportede9 where the 
effective symmetry of the hexacoordinated species was only 
DB (three different orthogonal axes). It is the purpose of this 
work to extend the previously developed I* mode14J to this class 
of complexes. 
Definition of the Bond Indices Iand  I* 

Let V represent the ligand field Hamiltonian; let di and ei 
be the five eigenstates and eigenvalues of the one-electron 
perturbation matrix, constructed on the d-orbital manifold (i  
= 1-5). This means that ti  = (dilildi) are the d-orbital de- 
stabilization energies. In what follows, the ligand orbital 
stabilization is assumed to be equal to the corresponding metal 
d destabilization. Figure 1 shows the example of a schematic 
energy level diagram for an octahedral complex. 

If the state function under consideration 9 can be described 
by one single configuration (as in Figure l ) ,  the total one- 
electron bonding energy is given by 

Z = -(91Vl9) = Chiti (1) 
i 

where hi is the number of holes in the ith d orbital. 
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Since the ligand field Hamiltonian can be written as a sum 
of individual ligand perturbations 

v =  E VL 
L 

the contribution of the Lth ligand to I is given by 

I(ML) = Chj(dilVLldi) (2) 
i 

It should be stressed that the quantities Z and Z(ML) are not 
necessarily acceptable approximations for the thermodynamic 
bond energies. For instance, they should certainly not be used 
to compare the bond strength from one metal to another one 
(having a different number of d electrons). But they can be 
useful in a more limited context: for instance, the “bond 
indices” Z(ML) might provide a comparative measure of the 
different bond strengths within one given state of a complex. 

If the relevant state function is constructed on the basis of 
several configurations, the extension of eq 1 is quite 
straightforward. One particular case, that will be of some 
interest in the next section, arises when the state function is 
a linear combination of two determinants, differing in only 
one spin orbital. A wavefunction of this type can obviously 
be rearranged into one single determinant, whose spin orbitals 
are not diagonal in V. In this case, it is easy to show that the 
quantity I can still be obtained from eq 1, but now the sum- 
mation does not run over the five eigenorbitals of V but over 
the orbitals in the determinant and their orthogonal coun- 
terparts. 

For instance, consider the &, 4A2g ground state and the 
t$,e:, 4T2, excited state of an octahedral d3 system; the wave 
functions (corresponding to Ms = 3/2 for instance) are given 
by eq 3. In o h ,  4t2J  = 4 s  and €(e,) = 3u; therefore, the 

9 0  = Ixz yz xyl 

9 1  = Ixzyz x2-y2( 

9 2  = (31/2/2)lxz xy z2( + (1/2)lxz xy x* - y21 
93 = ( 3 1 / 2 / 2 ) ~ ~  XY z21 - (1/2)lyz XY X’ -y21 (3) 

ground state Z = 3e(t2J + 44eJ = 12u + 12s,  and each 
Z(ML) = 2a + 27r. For 4T2, the three functions lead to the 
expression I* = 4t(t2J + 3t(e,) = 9u + 16s, and all Z*(ML) 
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Figure 1. Schematic orbital energy level diagram of an octahedral 
d’ system (ground state). Ligand orbital stabilization is assumed to 
be equal to the metal d-orbital destabilization. Therefore, the total 
stabilization resulting from the bonding interactions (1 orbitals) is 
simply related to the distribution of the holes in the d orbitals. 

= 3 / 2 ~  + where the asterisk refers to the bond indices 
in the excited state. As a consequence of the excitation, an 
isotropic bond weakening results to the extent that I - I* = 
‘/2a - 2/3a = 1/6(10Dq) .  If the symmetry is lowered from 
Oh to D4h, the 4T, state gives rise to 4B, and 4Eg; to first order 
in perturbation theory, the state functions remain \k, and (\k2, 
Q3), respectively (if C4 is along the z axis). Let the five 
diagonal matrix elements in this case be denoted by t(z2) = 
2aax + aq, ~ ( x y )  = 4%,, t(x2 - y 2 )  = 3a,, and ~ ( x z )  = E ~ Z )  

= 2%ax + 27iq, where am = (a, + u-,), aq = 1/4(ux + u-, 
+ uy + u - ~ ) ,  and 0, + o-, = uY + u - ~ ;  ax stands for axial and 
eq for equatorial. Then, for \kl, corresponding to the excitation 
xy - x 2 -  Y 

I* = €(XZ) + t b z )  + t(X2 - y2) + 2t(z2) + 2c(xy) 

= 4aax + 4Tax + 5Beq + 12%, 

and 
I*(MLax) = 2uax + 2aaX 

I*(MLq) = s/quq + 3a, (4) 

For \k2, the populated eg orbital is (31/2/2)d,2 + (1/2)d,2,2 
= ~,L, ,z ,  while the vacant orthogonal orbital is given by 
-( 1 /2)dz + (31/2/2)d+z = dg. Therefore, I* = t(xz) + t (xy )  
+ t(z2 - y 2 )  + 2 tbz )  + 2t(x2). Since (z211/1x2 - y 2 )  = 0 in 

€(Z2 - y2) = (22  - y2Jvlz2 - y2) = Y4€(Z2) + Y4C(X2 - y2) = 
7 2 a a x  + 72aq 

t(X2) = (X21vlX2) = Y4t(z2) + Y4€(X2 - y2) = y2aax + S/zaq 
(5) 

D4h, one has 

Therefore 

I*(MLax) = 5/qua, + 3am 

I*(ML,) = I3/saes + Y2aq ( 6 )  

Identical equations can be obtained for \k3. 
In a previous comm~nication,~ the same results were ob- 

tained in a more intuitive way. The corresponding anisotropic 
ligand labilization has been related to Adamson’s empirical 
rules and to the relevant experimental data. In virtually all 
complexes, the labilization mode (axial or equatorial) was 
correctly p r e d i ~ t e d . ~ . ~  
Orthorhombic Labilization 

If the effective symmetry of the complex is lowered from 
D4h to D2h, the matrix element ( z 2 1 ~ x 2  - y2)  becomes nonzero. 
At the one-electron level, one obtains t (xy)  = 2?r, + 2ap ~ (xz )  
= 2?i, + 2%,, and t b z )  = 2iiY + 2%,, and the ag part of the 
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perturbation matrix is given by (I). The roots of the resulting 
ZZ xz - )?2 

secular equation contain quadratic terms; therefore, the bond 
indices I(ML) can no longer be expressed as linear functions 
of uL and aL alone. Apparently, I(ML) now becomes an 
explicit function of the u and a parameters of the other ligands 
as well. 

A formal treatment of this situation is most easily carried 
out by introducing 

(7) 
3 q a y  - B,) 3 a  
28, - ax - a,, - 1 2 a I -  

2 2 
tan 2a  = 

where the angle a is a measure for the deviation from tet- 
ragonal symmetry. 

We will adopt the conventions ay > a, and 2a2 > ax + ay, 
which correspond to a particular though not necessarily unique 
choice of the coordinate system. If so, the orbital of lowest 
energy d, has a predominant (x2 - 9) character, while dh, the 
orbital of highest energy, has a predominant (z2) character 
(see eq 8). The mixing coefficients sin a and cos a depend 

dl = (sin a)(x2 - y 2 )  + (cos a)(z2) 

dh = (sin a) ( z2 )  - (cos a)(x2 - y 2 )  

a 37  
- 5 a 5 -  
2 4 

on the u parameters of all the metal-ligand interactions. 
If we want to extend our considerations to a many-electron 

system, the mixing coefficients of d,2 and d,z-g are further 
determined by the electron-repulsion parameters. Indeed, 
consider the DZh states, resulting from a parent 4T2g (t: e,) 
state of the octahedral d3 system, shown in Figure 2. If the 
orthorhombic perturbation Verb is small, the octahedral 
functions \kl, \k2, and q3 will still provide an adequate de- 
scription for 4B1,, 4B3g, and 4B2g, respectively. The energy - of, 
e.gi, 4B1g(~y  - x2 - y 2 )  is given by 5(Dq, + Dq,), where Dq, 
= /* (Dq,  + Dq-,) etc. In what follows, we will adopt the 
convention that 4B1g is the lowest excited state; it is always 
possible to orient the coordinate system so as to realize this 
condition by simply making G, the strongest field. Since the 
u parameters are the most important contributors to Dq, the 
here proposed choice of coordinate system is generally com- 
patible with the convention of the one-electron case: 28, > 
a,, + ar In the rare cases, where it is not, the treatment should 
be modified-albeit only very slightly-at the appropriate 
places. l o  

If Verb increases, the second-order interactions-especially 
between 4Tlg(p4 - r2) and 4T2,(pq - p 2  - q2)-become 
gradually more important (p, q,  and r stand for x, y ,  or z). 
For the lowest 4B1g state, the excitation corresponds to 

xy - (sin S)(x2 - y 2 )  + (cos O)(z2) 

- -  

a 3 7  - 5 0 5 a 5 -  
2 4 

(9) 

where the angle 0 is formally introduced in order to describe 
the appropriate mixing of z2 and x2 - y 2  under the combined 
action of both the interelectronic repulsion and the ortho- 

- - -  
(10) In these cases, one still lets Dq, > Dq, or Dq,, but now 23, < #x + a, 

and ay > ax, so that tan 2a < 0. Therefore, r/4 6 a 6 r/2, and in eq 
8, d, becomes the lowest orbital while in eq 9 the excitation to the lowest 
‘B, state corresponds to xy - (sin O)(r2) - (cos 8)(x2 - y 2 )  (r/4 6 a 
5 16 3 ~ 1 4 ) .  
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Figure 2. Partial state energy level diagram of an octahedral d3 system 
with symmetry lowering to DLs, The three states resulting from T2g 
correspond to excitations of the type p q  - p 2  - q2; the three states 
resulting from Tle correspond to excitations of the type pq - #, where 
p ,  q ,  or r stands for x, y ,  or z .  

rhombic perturbation. When a, = ax, 8 = CY = 7r/2 and the 
D4k functions are obtained; when a, increases with respect to 
sx, 8 increases much more slowly than CY and only for large 
values of ay - a,, does 8 approach a again. Indeed, the upper 
bound for the ( z2 ,  x2 - y2) mixing is determined by the D Z h  
eigenorbitals of eq 8; this situation can only be realized when 
the orthorhombic crystal field becomes much larger than the 
interelectronic repulsion. 

For any given complex, the numerical value of 8 depends 
on the relative magnitude of the different c parameters and 
the repulsion parameters B and C; it can be determined in each 
case by a complete numerical state calculation. 

The bond indices, corresponding to the lowest 4B1, state, can 
be found from the previously derived equations; if the singly 
occupied u orbital in eq 9 is denoted by la,, the corresponding 
orthogonal vacant orbital is given by 

(10) 

Then one finds for 4B1, 
Z* = 24xy) + ~ ( x z )  + +z) + ( l a . J ~ l a , )  + 2(2aglT/12a,) 

and 

2a, = (sin 8)(z2) - (cos d)(x2 - y2) 

Z*(ML,) = 2 ~ ,  + (2 - COS' O)U, 

Z*(ML,) = 3 ~ ,  + [2 - cos2 (8 - T / ~ ) ] u )  

Z*(ML,) = 3 ~ ,  + [2 - COS' (8 + ~ / 3 ) J a ,  (11) 
These expressions obviously reduce to eq 4 for 8 = ~ 1 2 .  It 
is well to stress again at this point that the simple form of eq 
11 does not imply that a given bond index I*(ML,) should 
depend only on the parameters up and 7rp. Indeed, the value 
of 8 depends on all the ligands and even on their relative 
position. The variation of the up coefficients is shown in Figure 
3; the effects of 8 are obviously very large. For instance, for 
a given value a,, and ox, the relative values of the bond indices 
Z*(ML,) and Z*(ML,) might interchange by increasing, e.g., 
C,! 

It should also be noted that the coefficients of I*(ML,) and 
I*(ML,)-being equal at the outset ( 1 . 2 5 ) a r e  very sensitive 
functions of 8; the effect is such that the bonds on the weaker 
u axis (a, < a,) are weakened even more. 

n12 2n13 3n14 

Figure 3. Variation of the coefficient of up with angle 6' (d3 or d6 
system). For 6' = r / 2 ,  the occupied e orbital is simply dxi9 ;  for 0 
= 3u/4, the occupied e orbital is an equal mixture of d,z9 and d g  
(eq 9). The functions shown are (2 - cos2 6') for Z*(ML,) and [2 - 
cos2 (0 * r/3)] for Z*(ML,) and Z*(ML,) (eq 11). 

Figure 4. Coordinate system satisfying the conventions used in the 
text: g, > up > u,; ZXj, > ZXj,, GX. 

Applications 
To our knowledge, the only cases where D2 labilization has 

been studied experimentally are the following. 
1. ch-Cr(en)2(NCS)C1+.6 The coordinate system satisfying 

the conventions Dq, > Dq,, Dq,; s, > s,, and s2 > 1/2(sy  + 
a,) is shown in Figure 4. 

Using the parameters urn = 0.718 pm-i, c N ~ -  = 0.641 pm-', 
ucl- = 0.558 pm-', 7rCn = 0, rNc- = 0.038 pm-I, TCI- = 0.090 
pm-', and B = 0.07 pm-l, one finds a = 105.62', 8 = 92.44', 
and the la, orbital is given by la, = 0.999(x2 - y2) - 0.043(z2). 
The I* values are 

- - -  

Z*(ML,) = 27r, + 1 . 9 9 8 ~ ~  

Z*(ML,) = 37r, + 1 . 2 8 8 ~ ~  

I*(ML,) = 3x, + 1 . 2 1 4 ~ ~  

Z*(Cr-(en),) = 1.44 pm-' 

Z*(Cr-(en),) = 0.93 pm-' 
Z*(Cr-NCS) = 0.94 pm-' 

Z*(Cr-(en),) = 0.87 pm-' 
Z*(Cr-C1) = 0.95 pm-' 

Therefore, in a photosubstitution of this molecule, one expects 
the ethylenediamine ligand to be exchanged with a rather 
pronounced preference for bond breaking in a bond trans to 
C1-. This conclusion is also compatible with an extension of 
Adamson's empirical rules to D2k molecules. 

Experimentally, one observes virtually no photosolvation of 
C1- or NCS- (4 5 while the en ligand photodissociates 
very efficiently (6 i= 0.2 or 0.3). It is unknown whether or 
not the en molecule is released preferentially from the x axis. 
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2. frals-C0(CN)~(H~0)~.’ Although the detailed examples 
in the previous sections were all concerned with d3 systems, 
an extension to d6 systems is quite straightforward.” The 
adequate coordinate system is shown in Figure 4. The ligand 
field parameters were taken from a detailed spectroscopic 
analysis of a number of mixed aquc-cyano-cobalt(II1) com- 
plexes12 (all values in pm-’): aCN-, 1.215; aHp, 0.66; C, 0.360; 

1.547. In this complex, a, = 1 / 2 ( ~ 2  + a,), which implies that 
tan 2a  = 1/3’12 and a = 105O. Calculating the combined 
effect of the orthorhombic field and the interelectronic re- 
pulsion, one obtains 0 = 100.83O and la, = 0.982(x2 - y 2 )  

The lowest excited 3B1, state (xy - la,) is characterized 

KcN-, 0.039; “ ~ ~ 0 ,  0.108; B, 0.053; lODqcN-, 3.489; 1oDqH,o, 

- 0.188(z2). 

by 
I* = ~ ( x y )  + ( laJ l l la , )  + 2(2a,lv2ag) 

Z*(ML,) = 1 . 9 6 ~ ~  Z*(Co-(CN),) = 2.39 pm-’ 

Z*(ML,) = 1 . 4 3 ~ ~  + x, Z*(Co-(CN),) = 1.77 pm-l 
Z*(Co-(H,O),) = 1.05 pm-’ 

Z*(ML,) = 1.1 la, + x,  Z*(Co-(H,O),) = 0.84 pm-l 
Therefore, one expects the solvent ligands on the x axis to be 
preferentially exchanged upon ligand field irradiation. This 
is again compatible with an application of Adamson’s rules 
to the DZh case. The experimentally observed photoinertness 
of trans-Co(CN),(H2O), in aqueous solution is compatible 
with the predictions, but so far the possibility of (H20), la- 
bilization cannot be excluded. 

~ i s - R h ( e n ) ~ ( H ~ O ) B r ~ + . ~  For the Rh(II1) parameters, the 
following numbers have been derived from a spectral analysis1z 
(all values in pm-I): a”,, 1.14; q-, 0.88; aBr-, -0.93; 

The water parameters are less well-known, except for the 
fact that lODq = 2.2 pm-I. We will assume xH20 0.05 and 
aHZ0 = 0.8 pm-l. Adopting the coordinate system of Figure 
4, one can readily obtain the relevant quantities CY = 96.5 and 
1 0 2 O  and 0 = 96.2 and 100.7’ for C1-and Br-, respectively. 
The l a  orbitals are given by l a  (Cl-) = 0.994(x2 - y z )  - 

the 3B1, state (xy - la,) in the chloro complex one finds 

3. c&-Rh(”3)4(H20)a2+,8 C&-R~(NH~)~(H~O)BP,B and 

0; TCL- ,  0.21; H B ~ - ,  0.29; B, -0.04. 

0.107(z ? ) and la,(Br-) N 0.983(x5-y2) - 0.186(z2), and for 

Z*(MLx) = 1 . 9 8 8 ~ ~  Z*(Rh-(NH,),) = 2.27 pm-I 

Z*(ML,) = T, + 1 . 3 4 7 ~ ~  Z*(Rh-(NH,),) = 1.54 pm-] 
Z*(Rh-Cl-) = 1.40 pm-’ 

Z*(MLx) = K, + 1 . 1 6 3 ~ ~  Z*(Rh-(NH3),) = 1.33 pm-’ 
Z*(Rh-H20) = 0.98 pm-I 

In the bromo complex, one obtains nearly the same bond 
indices’, for NH3 and H20,  while Z*(Rh-Br-) = 1.54 pm-l. 
Clearly, the photoactive 3B1, state will most readily release 
its H 2 0  ligand-the uncertainty on the HzO parameters is 
definitely smaller than the differences between the I* va1~es.l~ 
This conclusion is in agreement with the observation that 
ligand field excitation of ~ i s - R h ( N H ~ ) ~ ( H ~ o ) x ~ +  leads to 
trans-Rh(NH,),(H20)X2+. These results have been inter- 
preted* in terms of a dissociative reaction mechanism, where 
the isomerization of the pentacoordinated intermediate Rh- 
(NH3)4X2+ is held responsible for the observed stereomobility. 
It should also be stressed that an extension of Adamson’s rules 
leads to the wrong predictions: the strongest ligand on the 
weakest axis is (NH,),. 
Conclusions 

The bond index formalism is a versatile tool in the com- 
parative study of the different metal-ligand bond strengths 
within any one given electronic state. 

It is possible to adapt this formalism to DZh molecules; the 
results are sometimes, but not always, similar to Adamson’s 
rules. When the conclusions are divergent, the bond index 
formalism appears to lead to the correct answers. The reason 
for deviations from Adamson’s rules are twofold: 

(i) As shown earlier, Adamson’s rules are equivalent to 
postulating that the leaving ligand is the one that absorbs the 
most energy and is therefore characterized by the maximal 
value of AZ(ML) = Z(ML) - Z*(ML). In fact, the relevant 
quantity appears to be Z*(ML), not AZ(ML). 

(ii) In some cases, the role of the other ligands may be 
important in determining Z(ML); the relative position and 
ligand field parameters of the “inert” ligands determine the 
numerical value of a and 0 to a significant extent. 

Registry No. ci~-Cr(en)~(NCS)Cl+, 25125-67-1; trans-Co- 
(CN),(H20),, 5891 8-76-6; C ~ ~ - R ~ ( N H , ) ~ ( H ~ O ) C I * + ,  71424-38-9; 
C ~ ~ - R ~ ( N H ~ ) ~ ( H ~ O ) B ~ ~ + ,  7 1382-1 4-4; c i ~ - R h ( e n ) ~ ( H ~ O ) B r ~ + ,  
53368-48-2. 

(1 1) Such an extension is carried out in detail for D4h in ref 4. It is also 
shown there how the I* model can accommodate r-acceptor ligands. 

(12) L. G. Vanquickenborne, A. Ceulemans, and D. Beyens, to be submitted 
for publication. 

(13) More specifically, one obtains I*(Rh-(NH3),) = 2.24 pm-I, I*(Rh- 
(NH,),) = 1.54 pm-I, I*(Rh-(NH3),) = 1.33 prn-l, and I*(Rh-H,O) 
= 0.98 pm-l. 

(14) Even with U H S  = 0.1 prn-l. one still obtains I*(Rh-CI) - I*(Rh-H,O) 
> 0.1 urn-’. 
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NbX4 Chains 

The band structures of the singly bridged [Pt(NH3)4.Pt(NH3)J2]4+ chain (X = CI, Br) and the doubly bridged NbX4 
chain (X = CI, I) were obtained by employing the tight-binding scheme based upon the extended Huckel method. The 
band gaps and the stabilities of these chains were examined as a function of distortion in their unit cell geometries. In 
contrast to the case of the singly bridged [R(NH1)4.R(NH3)J2]4+ chain, the doubly bridged NbX4 chain leads to partially 
filled overlapping bands even if the metal-bridging halide bonds are not exactly the same in length. 

Metal-ligand-metal bridging is an important structural 
pattern leading to numerous chain and net compounds of 
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transition-metal In connection with recent interest 
in low-dimensional conducting materials, a number of lig- 
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